曲線積分對座標的曲線積分原函式的這個定義式我看不懂啊它這個或代表什麼意思是這兩個公式是

2021-04-15 14:14:02 字數 4639 閱讀 8139

1樓:匿名使用者

沿著折線積分,平行x軸時y=y0, 而沿著平行y軸時,x=x,

2樓:青鳥

對x積分時,y=y而不是=y0,因為它是先x等於x0不變,y從y0到y 然後y=y不變,x從xo到x

對弧長的曲線積分和對座標的曲線積分,幾何意義是什麼啊?

3樓:不許放嵩

物理意義不一樣了

先說對弧長的曲線積分,它的物理意義是功,我現在定義一個函式f(x,y,z),它是力的函式,現在曲線方程為u = u(x,y,z),那麼這個力的函式沿著曲線方程做功,問你做的功有多大???就是第一類曲線積分,對弧長的曲線積分了吧???

再說對座標的曲線積分,則對應的物理意思就是向量,比如我給的力的函式為向量﹛p、q、r﹜,那麼功的定義肯定是和對應的﹛dx、dy、dz﹜相乘吧???就是第二類曲線積分……

另外第二類曲線積分還可以用於定義場的一些量,比第一類曲線積分常用的……

4樓:筱晢

都是物理學上這些抽象的概念 第一類已知線密度求與繩子的形狀 求密度 第二類是已知變力與做功方向 求做功大小 所以也叫對座標的曲線積分

對弧長的曲線積分求的是什麼,也就是幾何意義,對座標的曲線積分呢

5樓:匿名使用者

1)第一類曲線積分

a、不含被積函式,是曲線積分長度

b、含被積函式,理解為被積函式是曲線線密度,積分就是曲線質量2)第二類曲線積分

把積分函式看成力f,積分之後為力f沿著曲線所作功。

曲線積分分為:

(1)對弧長的曲線積分 (第一類曲線積分)(2)對座標軸的曲線積分(第二類曲線積分)兩種曲線積分的區別主要在於積分元素的差別;對弧長的曲線積分的積分元素是弧長元素ds;例如:對l的曲線積分∫f(x,y)*ds 。對座標軸的曲線積分的積分元素是座標元素dx或dy,例如:

對l』的曲線積分∫p(x,y)dx+q(x,y)dy。但是對弧長的曲線積分由於有物理意義,通常說來都是正的,而對座標軸的曲線積分可以根據路徑的不同而取得不同的符號

6樓:匿名使用者

對弧長的曲線積分:

如被積函式是弧的線密度,這個積分可以求出這段弧的質量。

特殊的,當被積函式是1的話,可以求出弧的長度。

對座標的,就是曲邊梯形的面積。

對弧長的曲線積分與對座標的曲線積分的區別和聯絡。

7樓:匿名使用者

說簡單點:對弧長的

積分只是對「弧長的大小積分」,而對座標的積分則包含對「大小與方向」兩個方面的積分.從形式上看,對弧長的積分是標量之間的乘法,對座標的積分是向量之間的點乘.

說點物理方面的應用應該更容易理解(這兩個例子其實就是高數書上引出兩類曲線積分的引例,也是普通物理的基礎):

(1)設想有一根繩子,其質量線密度λ並不均勻,即它是沿繩子曲線每點位置座標的函式λ(r),如何求出這條繩子的總質量?只要把λ(r)與對應位置的弧微分ds相乘就得到對應ds長度的質量,再對它沿著繩子曲線l積分就得到繩子的總質量了,即m=∫λ(r)ds,積分路徑是繩子對應的曲線l.這個是對弧長的積分.

(2)設想有一質點在變力f(r)(f和r都是向量,有大小有方向)的作用下,沿著軌跡s運動,如何求出某一段時間內變力f對質點所做的總功?只要把變力f(r)與某一微小時間間隔內的位移dr點乘,就可以得到這一小段時間內力對質點做的微功,然後再對質點運動軌跡s積分就可以得到力對質點做的總功,即w=∫f(r)·dr,積分路徑是質點運動的軌跡s.這個是對座標的積分.

(這裡所有的表示式都是向量)

很容易看出兩者的區別,這兩類積分的名稱就是從積分微元上定義的,ds是弧微分,dr是座標微分(位移).當然也能看出兩者的聯絡,只要我們將對座標的積分限定一個方向,比如我只要知道變力f在豎直方向上對質點做了多少功,只要將(2)中表示式把dr分開,寫成方位角乘以弧長ds的形式,對座標積分就可以變為對弧長積分.這就反映出兩種積分的關係:

投影關係.

對座標的曲線積分和對弧長的曲線積分有什麼區別。 高等數學問題

8樓:匿名使用者

說簡單點:對弧長的積分只是對「弧長的大小積分」,而對座標的積分則包含對「大小與方向」兩個方面的積分.從形式上看,對弧長的積分是標量之間的乘法,對座標的積分是向量之間的點乘.

說點物理方面的應用應該更容易理解(這兩個例子其實就是高數書上引出兩類曲線積分的引例,也是普通物理的基礎):

(1)設想有一根繩子,其質量線密度λ並不均勻,即它是沿繩子曲線每點位置座標的函式λ(r),如何求出這條繩子的總質量?只要把λ(r)與對應位置的弧微分ds相乘就得到對應ds長度的質量,再對它沿著繩子曲線l積分就得到繩子的總質量了,即m=∫λ(r)ds,積分路徑是繩子對應的曲線l.這個是對弧長的積分.

(2)設想有一質點在變力f(r)(f和r都是向量,有大小有方向)的作用下,沿著軌跡s運動,如何求出某一段時間內變力f對質點所做的總功?只要把變力f(r)與某一微小時間間隔內的位移dr點乘,就可以得到這一小段時間內力對質點做的微功,然後再對質點運動軌跡s積分就可以得到力對質點做的總功,即w=∫f(r)·dr,積分路徑是質點運動的軌跡s.這個是對座標的積分.

(這裡所有的表示式都是向量)

很容易看出兩者的區別,這兩類積分的名稱就是從積分微元上定義的,ds是弧微分,dr是座標微分(位移).當然也能看出兩者的聯絡,只要我們將對座標的積分限定一個方向,比如我只要知道變力f在豎直方向上對質點做了多少功,只要將(2)中表示式把dr分開,寫成方位角乘以弧長ds的形式,對座標積分就可以變為對弧長積分.這就反映出兩種積分的關係:

投影關係.

對弧長與對座標曲線積分的區別是什麼

9樓:匿名使用者

在幾何意義方面:

弧長積分可以計算弧長曲線的長度,∮ds = l的長度

座標積分沒有直接的幾何用法,一般只有物理上的

但是聯絡格林公式的話,可做座標積分和二重積分之間的橋樑

二重積分的幾何意義是計算平面面積的

所以座標積分的形式(1/2)∮ xdy-ydx就是計算平面面積

在物理意義方面:

弧長積分可以計算曲線的質量,轉動慣量等等

座標積分可以計算變力做功

下面是從其他地方摘錄回來的解釋:

說簡單點:對弧長的積分只是對「弧長的大小積分」,而對座標的積分則包含對「大小與方向」兩個方面的積分.從形式上看,對弧長的積分是標量之間的乘法,對座標的積分是向量之間的點乘.

說點物理方面的應用應該更容易理解(這兩個例子其實就是高數書上引出兩類曲線積分的引例,也是普通物理的基礎):

(1)設想有一根繩子,其質量線密度λ並不均勻,即它是沿繩子曲線每點位置座標的函式λ(r),如何求出這條繩子的總質量?只要把λ(r)與對應位置的弧微分ds相乘就得到對應ds長度的質量,再對它沿著繩子曲線l積分就得到繩子的總質量了,即m=∫λ(r)ds,積分路徑是繩子對應的曲線l.這個是對弧長的積分.

(2)設想有一質點在變力f(r)(f和r都是向量,有大小有方向)的作用下,沿著軌跡s運動,如何求出某一段時間內變力f對質點所做的總功?只要把變力f(r)與某一微小時間間隔內的位移dr點乘,就可以得到這一小段時間內力對質點做的微功,然後再對質點運動軌跡s積分就可以得到力對質點做的總功,即w=∫f(r)·dr,積分路徑是質點運動的軌跡s.這個是對座標的積分.

(這裡所有的表示式都是向量)

很容易看出兩者的區別,這兩類積分的名稱就是從積分微元上定義的,ds是弧微分,dr是座標微分(位移).當然也能看出兩者的聯絡,只要我們將對座標的積分限定一個方向,比如我只要知道變力f在豎直方向上對質點做了多少功,只要將(2)中表示式把dr分開,寫成方位角乘以弧長ds的形式,對座標積分就可以變為對弧長積分.這就反映出兩種積分的關係:

投影關係.

10樓:匿名使用者

說簡單點:對弧

長的積分只是對「弧長的大小積分」,而對座標的積分則包含對「大小與方向」兩個方面的積分。從形式上看,對弧長的積分是標量之間的乘法,對座標的積分是向量之間的點乘。

說點物理方面的應用應該更容易理解(這兩個例子其實就是高數書上引出兩類曲線積分的引例,也是普通物理的基礎):

(1)設想有一根繩子,其質量線密度λ並不均勻,即它是沿繩子曲線每點位置座標的函式λ(r),如何求出這條繩子的總質量?只要把λ(r)與對應位置的弧微分ds相乘就得到對應ds長度的質量,再對它沿著繩子曲線l積分就得到繩子的總質量了,即m=∫λ(r)ds,積分路徑是繩子對應的曲線l。這個是對弧長的積分。

(2)設想有一質點在變力f(r)(f和r都是向量,有大小有方向)的作用下,沿著軌跡s運動,如何求出某一段時間內變力f對質點所做的總功?只要把變力f(r)與某一微小時間間隔內的位移dr點乘,就可以得到這一小段時間內力對質點做的微功,然後再對質點運動軌跡s積分就可以得到力對質點做的總功,即w=∫f(r)·dr,積分路徑是質點運動的軌跡s。這個是對座標的積分。

(這裡所有的表示式都是向量)

很容易看出兩者的區別,這兩類積分的名稱就是從積分微元上定義的,ds是弧微分,dr是座標微分(位移)。當然也能看出兩者的聯絡,只要我們將對座標的積分限定一個方向,比如我只要知道變力f在豎直方向上對質點做了多少功,只要將(2)中表示式把dr分開,寫成方位角乘以弧長ds的形式,對座標積分就可以變為對弧長積分。這就反映出兩種積分的關係:

投影關係。

11樓:匿名使用者

分別是第一類曲線積分和第二類曲線積分,詳情可參考大學數學中的微分學下冊

二重積分與曲線積分割槽別,曲線積分與二重積分的區別

二重積分 抄d f u,v dudv 和 d f x,y dxdy 實際上bai是一樣的,只是改變了字母 du顯然在這個式子裡,二重zhi積分 d f u,v dudv 進行計算之後得到的是一個dao常數,不妨設其為a,即 f x,y xy a,現在將這個等式兩邊都在區域d上進行二重積分,即 d f...

利用曲線積分求星形線的面積,利用曲線積分,求星形線x acos 3t y asin 3t所圍成的圖形面積

應該是原積分 y dx 4 0 1 ydx 4 0 2 a sint 3d a cost 3 3 a 2 8 利用曲線積分,求星形線x acos 3t y asin 3t所圍成的圖形面積 10 答案為3 8 a 2。抄 解題過程如下 bai x acos du3t,y asin 3t是星形線,它的面...

怎樣用曲線積分求星形線的面積利用曲線積分求星形線的面積

用曲線積分求星形線的面積的方法 根據第二類曲線積分和格林公式,所求的面積 s dxdy l xdy 0 2 a cost 3d a sint 3 3 a 2 8 注 格林公式如下 例題 用曲線積分計算星形線x cos 3t,y sin 3t,其中 0轉化為第二類曲線積分用格林公式推廣式做,即由推出a...