線性代數,對角矩陣的問題,線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢

2021-03-04 05:57:30 字數 1283 閱讀 1552

1樓:zzllrr小樂

ba的第i行,第j列元素是:bij*j

ab的第i行,第j列元素是:i*bij

ba=ab,則有bij*j = i*bij即bij(j-i)=0

當i不等於j時,等式兩邊同時除以j-i,則得到bij=0

線性代數問題,求矩陣的對角陣時為什麼要把特徵向量單位化呢?

2樓:是你找到了我

因為正交陣的每一列都肯定

是單位陣,所以需要單位化;如果不用正交陣作對角化過程,只用一般的可逆陣,就可以不單位化。

線性變換的特徵向量是指在變換下方向不變,或者簡單地乘以一個縮放因子的非零向量。特徵向量對應的特徵值是它所乘的那個縮放因子。特徵空間就是由所有有著相同特徵值的特徵向量組成的空間,還包括零向量,但要注意零向量本身不是特徵向量 。

線性變換的主特徵向量是最大特徵值對應的特徵向量。特徵值的幾何重次是相應特徵空間的維數。有限維向量空間上的一個線性變換的譜是其所有特徵值的集合。

3樓:demon陌

因為p是正交矩陣,正交矩陣每一行(或列)都是單位向量,題中a恰有3個不同的特徵值,而不同特徵值對應特徵向量必正交,所以就不用正交化,而是直接單位化。

若λ0是a的特徵值,且是特徵多項式的k重根,因為a可對角化,所以特徵方程│a-λ0│=0的基礎解系必包含k個解向量,則這k這個特徵向量必須施密特正交化然後再單位化。

有定理:矩陣a可對角化的充分必要條件是a的每個特徵值的代數重數等於其幾何重數,即a有完全特徵向量系。

只有對角線上有非0元素的矩陣稱為對角矩陣,或說若一個方陣除了主對角線上的元素外,其餘元素都等於零。

4樓:匿名使用者

要將每個特徵向量單位化的原因是正交矩陣才能得到p^(-1)ap=p^tap=λ,既p的逆矩陣等於p的轉置矩陣,否則只能使用p^(-1)ap=λ.顯然,轉置矩陣要比逆矩陣好求多了.

求教線性代數矩陣中可對角化問題及其運算過程(見圖)

5樓:匿名使用者

一個n階矩陣a可對角化的充分必要條件是對於它的k重特徵根λ都有r(λe-a)=n-k。

選項a:1是2重特徵根,r(1e-a)=2≠3-2,所以矩陣不可對角化;

選項b:1是3重特徵根,r(1e-a)=1≠3-3,所以矩陣不可對角化;

選項c:1是2重特徵根,r(1e-a)=1=3-2,所以矩陣可以對角化;

選項a:1是2重特徵根,r(1e-a)=2≠3-2,所以矩陣不可對角化;

所以答案是c。

線性代數問題,線性代數問題?

這種題不要直接,要想辦法通過初等變換提出一個公因式來,剩下的就容易化簡了 線性代數問題?20 選c這個問題有很多種思考方法。1 直接利用線性相關性的定義。令這n 1個向量的組合等於0,得到一個n 1元的齊次線性方程組,由於向量是n維向量,所以該方程組只有n個方程,方程的個數少於未知數的個數,從而方程...

線性代數矩陣乘法運算,線性代數矩陣乘法運算

這種乘法完全可以心算,還需要什麼技巧 過程如下圖所示 如果回答對您有所幫助請採納,謝謝 線性代數中矩陣相乘如何計算啊 左邊矩陣的行的每一個元素 與右邊矩陣的列的對應的元素一一相乘然後加到一起形成新矩陣中的aij元素 i是左邊矩陣的第i行 j是右邊矩陣的第j列 例如 左邊矩陣 2 3 4 1 4 5 ...

求矩陣x,線性代數,線性代數求矩陣X

使用初等行變換 ax b a b e x a變成e,b自然就變成x,而a非常容易使用行變換變成單位矩陣 線性代數求矩陣x 詳細過程,如圖所示。先將方程轉化,看看需要計算那些東西。轉化後發現,需要計算a的行列式 a 2e a的逆矩陣。線性代數 有以下矩陣a b 已知xa b 求矩陣x 設a的逆矩陣為b...