線性代數特徵值與特徵向量問題,線性代數特徵值與特徵向量問題如圖?

2021-03-04 04:36:33 字數 6360 閱讀 4252

1樓:東風冷雪

選擇aa不可逆,必有特徵值0 ,可判斷b,c,d正確

a特徵值2

aa3=2a3 可知道a錯誤。

2樓:電燈劍客

要判斷一個向量x是不是a的特徵向量,只要把ax乘出來看看和x是否線性相關(當然還得要x≠0)

如果你實在一眼看不出來,那就按上述方式一個一個代進去算

線性代數特徵值與特徵向量問題(如圖)? 20

3樓:匿名使用者

觀察行列式|λe-a|,你就會發現所有的λ的n-1次方項,係數都是對角線上的元素的相反數。合併後,λ的n-1次方係數就是主對角線元素的和的相反數。

然後,任意一個λ的n次多項式,一定可以轉化成(λ-λ1)(λ-λ2)……(λ-λn)的形式,令其等於0,λ1……λn就是根(在這裡就是特徵值)。注意這裡面可能存在複數。你再觀察這個多項式裡的λ的n-1次方的係數(高中排列組合知識),很容易發現,最後整理出來λ的n-1次方係數就是-(λ1+λ2+……+λn)。

對比前面兩個就知道特徵值的和,等於主對角線的和。

線性代數特徵向量問題 如圖 為什麼特徵值變化了不會影響特徵向量的改變?求點解

4樓:匿名使用者

這和特徵值,特徵向量的定義有關。

下面作一簡要介紹。

若n階矩陣a,滿足aα=λα,α≠0,則稱λ為a的特徵值,α是屬於λ的特徵向量。

已知a的特徵值λ,特徵向量α。即aα=λα

等式兩端左乘a*,考慮到a*a=|a|e

則a*α=|a|/λ α,根據定義,a*的特徵值為|a|/λ,對應的特徵向量為α

b=(e+a*)²

等式兩端左乘a*

那麼bα=(e+a*)²α=(e+2a*+a*²)α= α+2a*α+a*²α,考慮到a*α=|a|/λ α

得bα=(1+2|a|/λ+|a|²/λ²)α,根據定義,b的特徵值為(1+2|a|/λ+|a|²/λ²)

對應的特徵向量為α。

實際上,對於矩陣多項式f(a),有f(λ)滿足。

根據上述推導過程,p-1ap的特徵值是多少,特徵向量又是多少呢?

newmanhero 2023年8月8日22:12:36

希望對你有所幫助,望採納。

線性代數 特徵值特徵向量問題求解?

5樓:匿名使用者

根據特徵值和特徵向量的定義:

ax=λx

顯然兩邊同乘以非零係數k

kax=kλx

a(kx)=λ(kx)

可知,如果x是矩陣a對應特徵值λ的特徵向量。那麼kx也是。

所以你這裡,不過是k=-1罷了。

6樓:匿名使用者

對的啊 答案把a1賦值1,a3就變-1

線性代數問題,特徵值與特徵向量

7樓:匿名使用者

個人感覺是,原題是個抽象的,而注裡就給出明確的兩個向量讓你去算算特徵值特徵向量什麼的,從而印證原題

線性代數,求特徵值和特徵向量

8樓:dear豆小姐

||特徵值  λ = -2, 3, 3,特徵向量

: (1    0    -1)^t、(3     0     2)^t。

解:|λe-a| =

|λ-1       -1          -3|

| 0         λ-3         0|

|-2         -2           λ|

|λe-a| = (λ-3)*

|λ-1        -3|

|-2           λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值  λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3      -1      -3]

[ 0      -5       0]

[-2      -2      -2]

行初等變換為

[ 1       1         1]

[ 0       1         0]

[ 0       2         0]

行初等變換為

[ 1       0         1]

[ 0       1         0]

[ 0       0         0]

得特徵向量 (1    0    -1)^t。

對於重特徵值 λ = 3, λe-a =

[ 2      -1      -3]

[ 0       0       0]

[-2      -2      3]

行初等變換為

[ 2      -1      -3]

[ 0      -3       0]

[ 0       0       0]

行初等變換為

[ 2       0      -3]

[ 0       1       0]

[ 0       0       0]

得特徵向量 (3     0     2)^t。

答:特徵值  λ = -2, 3, 3,特徵向量: (1    0    -1)^t、(3     0     2)^t。

擴充套件資料

特徵值是線性代數中的一個重要概念。在數學、物理學、化學、計算機等領域有著廣泛的應用

設 a 是n階方陣,如果存在數m和非零n維列向量 x,使得 ax=mx 成立,則稱 m 是a的一個特徵值(characteristic value)或本徵值(eigenvalue)。

非零n維列向量x稱為矩陣a的屬於(對應於)特徵值m的特徵向量或本徵向量,簡稱a的特徵向量或a的本徵向量。

矩陣的特徵向量是矩陣理論上的重要概念之一,它有著廣泛的應用。數學上,線性變換的特徵向量(本徵向量)是一個非簡併的向量,其方向在該變換下不變。該向量在此變換下縮放的比例稱為其特徵值(本徵值)。

9樓:匿名使用者

|a-λ

e| =

1-λ 2 3

2 1-λ 3

3 3 6-λ

r1-r2

-1-λ 1+λ 0

2 1-λ 3

3 3 6-λ

c2+c1

-1-λ 0 0

2 3-λ 3

3 6 6-λ

= (-1-λ)[(3-λ)(6-λ)-18]= (-1-λ)[λ^2-9λ]

= λ(9-λ)(1+λ)

所以a的特徵值為 0, 9, -1

ax = 0 的基礎解係為: a1 = (1,1,-1)'

所以,a的屬於特徵值0的全部特徵向量為: c1(1,1,-1)', c1為非零常數.

(a-9e)x = 0 的基礎解係為: a2 = (1,1,2)'

所以,a的屬於特徵值9的全部特徵向量為: c2(1,1,2)', c2為非零常數.

(a+e)x = 0 的基礎解係為: a3 = (1,-1,0)'

所以,a的屬於特徵值-1的全部特徵向量為: c3(1,-1,0)', c3為非零常數.

10樓:匿名使用者

你好,滿意請採納哦!

|a-λe|=

2-λ 3 2

1 8-λ 2

-2 -14 -3-λ

= -(λ-1)(λ-3)^2=0

解得特徵值為1,3,3

1對應的特徵向量:

(a-e)x=0

係數矩陣:

1 3 2

1 7 2

-2 -14 -4

初等行變換結果是:

1 0 2

0 1 0

0 0 0

所以特徵向量是[-2 0 1]^t

3對應的特徵向量:

(a-3e)x=0

係數矩陣:

-1 3 2

1 5 2

-2 -14 -6

初等行變換結果是:

1 1 0

0 2 1

0 0 0

所以特徵向量是[1 -1 2]^t

11樓:

一個基本結論:

矩陣所有特徵值的和為主對角線上元素的和。

所以,兩個特徵值之和為

1+3=4

12樓:匿名使用者

λ||λ|λe-a| =

|λ-1 -1 -3|| 0 λ-3 0||-2 -2 λ||λe-a| = (λ-3)*

|λ-1 -3|

|-2 λ|

|λe-a| = (λ-3)(λ^2-λ-6) = (λ+2)(λ-3)^2

特徵值 λ = -2, 3, 3

對於 λ = -2, λe-a =

[-3 -1 -3]

[ 0 -5 0]

[-2 -2 -2]

行初等變換為

[ 1 1 1][ 0 1 0][ 0 2 0]行初等變換為

[ 1 0 1][ 0 1 0][ 0 0 0]得特徵向量 (1 0 -1)^t對於重特徵值 λ = 3, λe-a =

[ 2 -1 -3]

[ 0 0 0]

[-2 -2 3]

行初等變換為

[ 2 -1 -3]

[ 0 -3 0]

[ 0 0 0]

行初等變換為

[ 2 0 -3]

[ 0 1 0]

[ 0 0 0]

得特徵向量 (3 0 2)^t.

13樓:豆賢靜

題目給的條件是a的秩為2,所以在特徵值為-2的時候,最多隻有兩個特徵向量。

14樓:小樂笑了

|λi-a| =

λ-1    -1    -3

0    λ-3    0

-2    -2    λ

= (λ-1)(λ-3)λ-2×3×(λ-3) = (λ-3)(λ+2)(λ-3) = 0

解得λ=-2,3(兩重)

15樓:匿名使用者

求 λ-2 2 0

2 λ-1 2

0 2 λ

行列式值為0的解。

得特徵值為 -2,1,4。

對λ^3-3λ^2-6λ+8進行因式分解。

一般求特徵值時的因式分解步驟都不難, 上式容易看出1是它的一個零點,提取出λ-1,得到

λ^3-3λ^2-6λ+8=(λ-1)(λ^2-2λ-8)

16樓:匿名使用者

一個線性方程組的基礎解系是這樣的一個解向量組:

17樓:徐臨祥

1.首先讓我們來了解一下特徵值和特徵向量的定義,如下:

2.特徵子空間基本定義,如下:

3.特徵多項式的定義,如下:

18樓:蒯懿靖迎夏

此題中,由於是實對稱矩陣,特徵向量互相垂直,所以η·η1=0,所以

x2+x3=0。在滿足該條件的基礎上任取互相垂直的向量選作η2、η3(只要滿足該條件,就屬於

λ=1對應特徵向量的解空間),即可。

對矩陣a,方程

ax=λx(x待求向量,λ待求標量),的解x稱為a的特徵向量,

λ為對應的特徵值,特徵值特徵向量問題是線性代數學習、研究的一個重要模組。

一般求解辦法:

第一步,求解方程:det(a-λe)=0

得特徵值

λ第二步,求解方程:(a-λe)x=0

得對應特徵向量

x特徵值特徵向量問題的應用比較廣泛:

線性代數領域——化簡矩陣(即矩陣對角化、二次型標準化等),計算矩陣級數

高等數學領域——解線性常係數微分方程組、判斷非線性微分方程組在奇點處的穩定性

物理——矩陣量子力學

……以上僅僅是筆者接觸到的一些應用。

線性代數矩陣特徵值,線性代數中矩陣的特徵值的概念是什麼? 謝謝

即行列式 a e 2 2 2 4 4 2 4 3 r3 2r1 2 2 2 4 4 2 2 0 1 c1 2c3 4 2 2 10 4 4 0 0 1 按第三行 1 36 於是解得特徵值 1,6,6 線性代數中矩陣的特徵值的概念是什麼?謝謝 1.首先n階矩陣a的特徵可能不止一個,如果有一個是0,那麼...

線性代數特徵值這個怎麼理解,線性代數,求特徵值和特徵向量

矩陣的特徵值就是特徵多項式的根.直接按特徵多項式的定義求行列式就能求特徵多項式呢?線性代數,求特徵值和特徵向量 特徵值 2,3,3,特徵向量 1 0 1 t 3 0 2 t。解 e a 1 1 3 0 3 0 2 2 e a 3 1 3 2 e a 3 2 6 2 3 2 特徵值 2,3,3 對於 ...

線性代數求矩陣特徵值和特徵向量時的多重特徵根在自由變數取值問題

1.這與矩陣能否對角化有關 a可對角化的充分必要條件是對k重根,相應的齊次線性方程組的基礎解系含k個向量.二重根只取一次時,矩陣不能對角化.2.關於技巧你看看這個吧 至於判斷是否化到了最簡階梯陣,你看看教材中的定義,一兩句說不清楚 這個和它沒關係,這要看 e a矩陣的秩,自由變數的個數等於n 它的秩...