光速是怎麼算出來的

2022-02-25 21:41:25 字數 4948 閱讀 5326

1樓:假面

2023年,丹麥天文學家o.c,羅默利用木星衛星的星蝕時間變化證實光是以有限速度傳播的。2023年,英國天文學家j.

布拉得雷利用恆星光行差現象估算出光速值為c=303000千米/秒。

光速的測定包含著對光所通過的距離和所需時間的量度,由於光速很大,所以必須測量一個很長的距離和一個很短的時間,大地測量法就是圍繞著如何準確測定距離和時間而設計的各種方法。

相對於光源靜止和運動的慣性系中測到的光速是相同的。物體的質量將隨著速度的增大而增大,當物體的速度接近光速時,它的質量將趨於無窮大,所以有質量的物體達到光速是不可能的。

只有靜止質量為零的光子,才始終以光速運動著。光速與任何速度疊加,得到的仍然是光速。速度的合成不遵從經典力學的法則,而遵從相對論的速度合成法則。

2樓:匿名使用者

讓兩個人分別站在相距一英里的兩座山上,每個人拿一個燈,第一個人先舉起燈,當第二個人看到第一個人的燈時立即舉起自己的燈,從第一個人舉起燈到他看到第二個人的燈的時間間隔就是光傳播兩英里的時間。但由於光速傳播的速度實在是太快了,這種方法根本行不通。但伽利略的實驗揭開了人類歷史上對光速進行研究的序幕。

2023年,丹麥天文學家羅麥第一次提出了有效的光速測量方法。他在觀測木星的衛星的隱食週期時發現:在一年的不同時期,它們的週期有所不同;在地球處於太陽和木星之間時的週期與太陽處於地球和木星之間時的週期相差十四五天。

他認為這種現象是由於光具有速度造成的,而且他還推斷出光跨越地球軌道所需要的時間是22分鐘。2023年9月,羅麥預言預計11月9日上午5點25分45秒發生的木衛食將推遲10分鐘。巴黎天文臺的科學家們懷著將信將疑的態度,觀測並最終證實了羅麥的預言。

羅麥的理論沒有馬上被法國科學院接受,但得到了著名科學家惠更斯的贊同。惠更斯根據他提出的資料和地球的半徑第一次計算出了光的傳播速度:214000千米/秒。

雖然這個數值與目前測得的最精確的資料相差甚遠,但他啟發了惠更斯對波動說的研究;更重要的是這個結果的錯誤不在於方法的錯誤,只是源於羅麥對光跨越地球的時間的錯誤推測,現代用羅麥的方法經過各種校正後得出的結果是298000千米/秒,很接近於現代實驗室所測定的精確數值。

2023年,英國天文學家布萊德雷發現了恆星的「光行差」現象,以意外的方式證實了羅麥的理論。剛開始時,他無法解釋這一現象,直到2023年,他在坐船時受到風向與船航向的相對關係的啟發,認識到光的傳播速度與地球公轉共同引起了「光行差」的現象。他用地球公轉的速度與光速的比例估算出了太陽光到達地球需要8分13秒。

這個數值較羅麥法測定的要精確一些。菜德雷測定值證明了羅麥有關光速有限性的說法。

光速的測定,成了十七世紀以來所的關於光的本性的爭論的重要依據。但是,由於受當時實驗環境的侷限,科學家們只能以天文方法測定光在真空中的傳播速度,還不能解決光受傳播介質影響的問題,所以關於這一問題的爭論始終懸而未決。

十八世紀,科學界是沉悶的,光學的發展幾乎處於停滯的狀態。繼布萊德雷之後,經過一個多世紀的醞釀,到了十九世紀中期,才出現了新的科學家和新的方法來測量光速。

2023年,法國人菲索第一次在地面上設計實驗裝置來測定光速。他的方法原理與伽利略的相類似。他將一個點光源放在透鏡的焦點處,在透鏡與光源之間放一個齒輪,在透鏡的另一測較遠處依次放置另一個透鏡和一個平面鏡,平面鏡位於第二個透鏡的焦點處。

點光源發出的光經過齒輪和透鏡後變成平行光,平行光經過第二個透鏡後又在平面鏡上聚於一點,在平面鏡上反射後按原路返回。由於齒輪有齒隙和齒,當光通過齒隙時觀察者就可以看到返回的光,當光恰好遇到齒時就會被遮住。從開始到返回的光第一次消失的時間就是光往返一次所用的時間,根據齒輪的轉速,這個時間不難求出。

通過這種方法,菲索測得的光速是315000千米/秒。由於齒輪有一定的寬度,用這種方法很難精確的測出光速。

2023年,法國物理學家傅科改進了菲索的方法,他只用一個透鏡、一面旋轉的平面鏡和一個凹面鏡。平行光通過旋轉的平面鏡匯聚到凹面鏡的圓心上,同樣用平面鏡的轉速可以求出時間。傅科用這種方法測出的光速是298000 千米/秒。

另外傅科還測出了光在水中的傳播速度,通過與光在空氣中傳播速度的比較,他測出了光由空氣中射入水中的折射率。這個實驗在微粒說已被波動說推翻之後,又一次對微粒說做出了判決,給光的微粒理論帶了最後的衝擊。

2023年,卡婁拉斯和米太斯塔德首先提出利用克爾盒法來測定光速。2023年,貝奇斯傳德用這種方法測出的光速是299793千米/秒。

光波是電磁波譜中的一小部分,當代人們對電磁波譜中的每一種電磁波都進行了精密的測量。2023年,艾森提出了用空腔共振法來測量光速。這種方法的原理是,微波通過空腔時當它的頻率為某一值時發生共振。

根據空腔的長度可以求出共振腔的波長,在把共振腔的波長換算成光在真空中的波長,由波長和頻率可計算出光速。

當代計算出的最精確的光速都是通過波長和頻率求得的。2023年,弗魯姆求出光速的精確值:299792.

5±0.1千米/秒。2023年,埃文森測得了目前真空中光速的最佳數值:

299792457.4±0.1米/秒。

3樓:匿名使用者

光速的測定在光學的發展史上具有非常特殊而重要的意義。它不僅推動了光學實驗,也打破了光速無限的

傳統觀念;在物理學理論研究的發展里程中,它不僅為粒子說和波動說的爭論提供了判定的依據,而且最

終推動了愛因斯坦相對論理論的發展。

在光速的問題上物理學界曾經產生過爭執,開普勒和笛卡爾都認為光的傳播不需要時間,是在瞬時進行的

。但伽利略認為光速雖然傳播得很快,但卻是可以測定的。2023年,伽利略進行了最早的測量光速的實驗

。 伽利略的方法是,讓兩個人分別站在相距一英里的兩座山上,每個人拿一個燈,第一個人先舉起燈,當第

二個人看到第一個人的燈時立即舉起自己的燈,從第一個人舉起燈到他看到第二個人的燈的時間間隔就是

光傳播兩英里的時間。但由於光速傳播的速度實在是太快了,這種方法根本行不通。但伽利略的實驗揭開

了人類歷史上對光速進行研究的序幕。

2023年,丹麥天文學家羅麥第一次提出了有效的光速測量方法。他在觀測木星的衛星的隱食週期時發現:

在一年的不同時期,它們的週期有所不同;在地球處於太陽和木星之間時的週期與太陽處於地球和木星之

間時的週期相差十四五天。他認為這種現象是由於光具有速度造成的,而且他還推斷出光跨越地球軌道所

需要的時間是22分鐘。2023年9月,羅麥預言預計11月9日上午5點25分45秒發生的木衛食將推遲10分鐘。

巴黎天文臺的科學家們懷著將信將疑的態度,觀測並最終證實了羅麥的預言。

羅麥的理論沒有馬上被法國科學院接受,但得到了著名科學家惠更斯的贊同。惠更斯根據他提出的資料和

地球的半徑第一次計算出了光的傳播速度:214000千米/秒。雖然這個數值與目前測得的最精確的資料相

差甚遠,但他啟發了惠更斯對波動說的研究;更重要的是這個結果的錯誤不在於方法的錯誤,只是源於羅

麥對光跨越地球的時間的錯誤推測,現代用羅麥的方法經過各種校正後得出的結果是298000千米/秒,很

接近於現代實驗室所測定的精確數值。

2023年,英國天文學家布萊德雷發現了恆星的「光行差」現象,以意外的方式證實了羅麥的理論。剛開始

時,他無法解釋這一現象,直到2023年,他在坐船時受到風向與船航向的相對關係的啟發,認識到光的傳

播速度與地球公轉共同引起了「光行差」的現象。他用地球公轉的速度與光速的比例估算出了太陽光到達

地球需要8分13秒。這個數值較羅麥法測定的要精確一些。菜德雷測定值證明了羅麥有關光速有限性的說

法。 光速的測定,成了十七世紀以來所的關於光的本性的爭論的重要依據。但是,由於受當時實驗環境的

侷限,科學家們只能以天文方法測定光在真空中的傳播速度,還不能解決光受傳播介質影響的問題,所以

關於這一問題的爭論始終懸而未決。

十八世紀,科學界是沉悶的,光學的發展幾乎處於停滯的狀態。繼布萊德雷之後,經過一個多世紀的醞釀

,到了十九世紀中期,才出現了新的科學家和新的方法來測量光速。

2023年,法國人菲索第一次在地面上設計實驗裝置來測定光速。他的方法原理與伽利略的相類似。他將一

個點光源放在透鏡的焦點處,在透鏡與光源之間放一個齒輪,在透鏡的另一測較遠處依次放置另一個透鏡

和一個平面鏡,平面鏡位於第二個透鏡的焦點處。點光源發出的光經過齒輪和透鏡後變成平行光,平行光

經過第二個透鏡後又在平面鏡上聚於一點,在平面鏡上反射後按原路返回。由於齒輪有齒隙和齒,當光通

過齒隙時觀察者就可以看到返回的光,當光恰好遇到齒時就會被遮住。從開始到返回的光第一次消失的時

間就是光往返一次所用的時間,根據齒輪的轉速,這個時間不難求出。通過這種方法,菲索測得的光速是

315000千米/秒。由於齒輪有一定的寬度,用這種方法很難精確的測出光速。

2023年,法國物理學家傅科改進了菲索的方法,他只用一個透鏡、一面旋轉的平面鏡和一個凹面鏡。平行

光通過旋轉的平面鏡匯聚到凹面鏡的圓心上,同樣用平面鏡的轉速可以求出時間。傅科用這種方法測出的

光速是298000 千米/秒。另外傅科還測出了光在水中的傳播速度,通過與光在空氣中傳播速度的比較,他

測出了光由空氣中射入水中的折射率。這個實驗在微粒說已被波動說推翻之後,又一次對微粒說做出了判

決,給光的微粒理論帶了最後的衝擊。

2023年,卡婁拉斯和米太斯塔德首先提出利用克爾盒法來測定光速。2023年,貝奇斯傳德用這種方法測出

的光速是299793千米/秒。

光波是電磁波譜中的一小部分,當代人們對電磁波譜中的每一種電磁波都進行了精密的測量。2023年,艾

森提出了用空腔共振法來測量光速。這種方法的原理是,微波通過空腔時當它的頻率為某一值時發生共振

。根據空腔的長度可以求出共振腔的波長,在把共振腔的波長換算成光在真空中的波長,由波長和頻率可

計算出光速。

當代計算出的最精確的光速都是通過波長和頻率求得的。2023年,弗魯姆求出光速的精確值:299792.5±

0.1千米/秒。2023年,埃文森測得了目前真空中光速的最佳數值:299792457.4±0.1米/秒。

光速的測定在光學的研究歷程中有著重要的意義。雖然從人們設法測量光速到人們測量出較為精確的光速

共經歷了三百多年的時間,但在這期間每一點進步都促進了幾何光學和物理光學的發展,尤其是在微粒說

與波動說的爭論中,光速的測定曾給這一場著名的科學爭辯提供了非常重要的依據。

3 14是怎麼算出來的?3 14是怎麼計算出來的?

是由直徑與圓周,通過計算相互求 計算 得出來的。計算圓面積時直徑增加個一,圓周就增加三點一四 159 不盡小數 同理,每增加一個,直徑就增加個一。是由我國古代數學家祖沖之的割圓術求出來的。我國古代數學家祖沖之,以圓的內接正多邊形的周長來近似等於圓的周長,從而得出 的精確到小數點第七位的值。圓周長 直...

踏步怎樣算出來呢13個踏步怎樣算出來呢

水平 12 踏面寬度 垂直 13 踏步高度 舉例 踏步高度150,踏步寬300,則水平總長12 300 3600垂直高13 150 1950 你會算了嗎?題目其它條件呢 需要補充後,來回答 請理解並補充完整。你要算什麼?13個踏步有多高?用了多少料。耗費多少人工多少工時,總成本多少。或者使用壽命,最...

cisco交換機背板是怎麼算出來的

背板頻寬 表示的是我們的介面處理器或者介面卡和核心交換引擎之間的速度,大家可能都知道我們計算一個交換機要達到線速 的一個背板頻寬的標準是 2 埠數量 埠頻寬,也看得到現在的交換機標稱的背板頻寬都大於我們的那個理論值,但是交換機的線速 的實際情況並不一定是這樣,那是因為他還不是最核心的引數。交換機背板...