軟土有什麼工程特性土的主要工程性質有什麼?

2021-03-05 09:16:08 字數 5775 閱讀 5816

1樓:___耐撕

1、高壓縮性:軟土由於孔隙比大於1,含水量大,容重較小,且土中含大量微生物、腐植質和可燃氣體,故壓縮性高,且長期不易達到穩定。在其它相同條件下,軟土的塑限值愈大,壓縮性亦愈高。

2、抗剪強度低:因此軟土的抗剪強度最好在現場作原位試驗。

3、透水性低:軟土的透水效能很低,垂直層面幾乎是不透水的,對排水固結不利,反映在建築物沉降延續時間長。同時,在加荷初期,常出現較高的孔隙水壓力,影響地基的強度。

4、觸變性:軟土是絮凝狀的結構性沉積物,當原狀土未受破壞時常具一定的結構強度,但一經擾動,結構破壞,強度迅速降低或很快變成稀釋狀態。軟土的這一性質稱觸變性。

所以軟土地基受振動荷載後,易產生側向滑動、沉降及其底面兩側擠出等現象。

5、流變性:是指在一定的荷載持續作用下,土的變形隨時間而增長的特性。使其長期強度遠小於瞬時強度。

這對邊坡、堤岸、碼頭等穩定性很不利。因此,用一般剪下試驗求得抗剪強度值,應加適當的安全係數。

6、不均勻性:軟土層中因夾粉細砂透鏡體,在平面及垂直方向上呈明顯差異性,易產生建築物地基的不均勻沉降。

2樓:匿名使用者

軟弱土是指淤泥、淤泥質土和部分衝填土、雜填土及其他高壓縮性土。這類土的物理特性大部分是飽和的,含有機質,天然含水量大於液限,孔隙比大於1。當天然孔隙比大於1.

5時,稱為淤泥;天然孔隙比大於1而小於1.5時,則稱為淤泥質土。這類土的抗剪強度很低,壓縮性較高,滲透性很小,並具有結構性,廣泛分佈於我國東南沿海地區和內陸江河湖泊的周圍,是軟弱土的主要土類,通稱軟土。

一般具有下列工程特性:(1)含水量較高,孔隙比大。一般含水量為35%~80%,孔隙比為1~2。

(2)抗剪強度很低。根據土工試驗的結果,我國軟土的天然不排水抗剪強度一般小於20kpa,其變化範圍在5~25kpa;有效內摩擦角約為20°~35°;固結不排水剪內摩擦角12°~17°。正常固結的軟土層的不排水抗剪強度往往是隨距地表深度的增加而增大,每米的增長率約為1~2kpa。

加速軟土層的固結速率是改善軟土強度特性的一項有效途徑。(3)壓縮性較高。一般正常固結的軟土的壓縮係數約為α1-2=0.

5~1.5mpa-1,最大可達α1-2=4.5mpa-1;壓縮指數約為cc=0.

35~0.75 (4)滲透性很小。軟土的滲透係數一般約為1×10-6~1×10-8cm/s (5)具有明顯的結構性。

軟土一般為絮狀結構,尤以海相粘土更為明顯。這種土一旦受到擾動,土的強度顯著降低,甚至呈流動狀態。我國沿海軟土的靈敏度一般為4~10,屬於高靈敏度土。

因此,在軟土層中進行地基處理和基坑開挖,若不注意避免擾動土的結構,就會加劇土體變形,降低地基土的強度,影響地基處理效果。(6)具有明顯的流變性。在荷載作用下,軟土承受剪應力的作用產生緩慢的剪下變形,並可能導致抗剪強度的衰減,在主固結沉降完畢之後還可能繼續產生可觀的次固結沉降。

軟弱土地基處理方法主要有換填墊層法、預壓法、強夯法和強夯置換法、振衝法、砂石樁法、水泥粉煤灰碎石樁法、夯實水泥土樁法、水泥土攪拌法、高壓噴射注漿法、石灰樁法、灰土擠密法和土擠密法、柱錘沖擴樁法、單液矽化法和鹼液法。各種地基處理方法適用範圍及原理等請參考《建築地基處理技術規範》jgj79-2002。參考資料:

地基及基礎(第三版) 中國建築工業出版社

3樓:匿名使用者

a. 觸變性

b. 流變性

c. 低強度

d. 高壓縮性

e. 低透水性

f. 不均勻性

土的主要工程性質有什麼?

4樓:z不可替代

土的工程性質是在設計和建造各種工程建築物時所必須掌握的天然土體或填築土料的工程特性。

不同類別的工程,對 土的物理和力學性質的研究重點和深度都各自不同。對沉降限制嚴格的建築物,需要詳細掌握土和土層的壓縮固結特性;天然斜坡或人工邊坡工程,需要有可靠的土抗剪強度指標;土作為填築材料時,其粒徑級配和壓密擊實性質是主要引數。

土的形成年代和成因對土的工程性質有很大影響,不同成因型別的土,其力學性質會有很大差別(見土和土體)。各種特殊土(黃土、軟土、膨脹土、多年凍土、鹽漬土和紅粘土等)又各有其獨特的工程性質。 除土的粒徑級配外,土中各個組成部分(固相、液相、氣相)之間的比例,將影響到土的物理性質,如單位體積重,含水量,孔隙比,飽和度和孔隙度等。

粘性土中含水量的變化,還能使土的狀態發生改變,阿太堡最早提出將土的狀態分為堅硬、可塑和流動三種,並提出了測定區分三種狀態的界限含水量的方法。從流動轉到可塑狀態的界限含水量稱液性界限;從可塑轉到堅硬狀態時的界限含水量稱塑性界限。兩者之間的差值稱土的塑性指數,它反映了土的可塑狀態的範圍。

土的界限含水量和土中粘粒含量、粘土礦物的種類有密切關係。為反映天然粘性土的狀態,常用液性指數,它等於天然含水量和塑性界限的差值(-)與其塑性 指數的比值。≤0時,土處於堅硬狀態;>1時,為流動狀態,0≤≤1時,為可塑狀態。

砂土的密實狀態是決定砂土力學性質的重要因素之一,用相對密度表示:=( -)/( - )。為天然狀態時孔隙比, 為砂土最鬆狀態時的孔隙比, 則為最密狀態時的孔隙比。

≈1時,最密實;≈0時,最鬆散。

土的壓縮和固結性質 土在荷載作用下其體積將發生壓縮,測定土的壓縮特性可分析工程建築物的地基沉降和土體變形。飽和粘土的壓縮時間決定於土中孔隙水排出的快慢。逐漸完成土壓縮的過程,即土中孔隙水受壓而排出土體之外,同時導致孔隙壓力消失的過程稱土的固結或滲壓。

k.泰爾扎吉最早提出計算土固結過程的一維固結理論,並指出某些 粘土中超靜孔隙水壓力完全消失後,土還可能繼續壓縮,稱次固結。產生次固結的原因一般認為是土的結構變形。

反映土固結快慢的指標是固結係數,土層的水平向固結係數和垂直向的不一定相同。

土的壓縮量還和它的應力歷史有關。土層在其堆積歷史上曾受過的最大有效固結壓力稱先期固結壓力。它與現今作用的有效覆蓋壓力相同時,土層為正常固結土;若先期固結壓力大於現今的覆蓋壓力,則為超固結土;反之則為欠固結土。

對於超固結土,外加荷載小於其先期固結壓力時,土層的壓縮很微小,外加荷載一旦超過先期固結壓力,土的變形將顯著增大。

土的強度性質 通常指土體抵抗剪下破壞的能力,它是土基承載力、土壓和邊坡穩定計算中的重要指標之一。它和土的型別、密度、含水量和受力條件等因素有關。飽和或幹砂或砂礫的強度表現為顆粒接觸面上的摩阻力,它與作用在接觸面的上法向有效應力 σ和砂的內摩擦角有關,即=σtg。

純粘性土的不排水抗剪強度僅表現為內聚力,而與法嚮應力無關,即=。

一般土則既有內聚力又有摩阻力,即=+σtg。式中的和不是常量而是變數,不僅決定於土的基本狀態,還和外加荷載速率、外加荷載條件、應力路線等有關。飽和土中的孔隙為水充滿,受外加荷載作用時,控制土體強度的不是其所受的總應力σ,而是有效應力σ′(即總應力與孔隙壓力μ之差):

σ′=σ-μ。

因而強度試驗的條件不同,所得的強度指標亦異。試驗時,不允許土樣排水所得到的是土的總強度指標;如允許完全排水則得到的是土的有效強度指標。理論上用有效應力和有效強度指標進行工程計算較為合適,但正確判別實際工程土體中的孔隙水壓水較困難,因而目前生產上仍多用總強度原理和總強度指標。

土體的強度還因其沉積條件的影響而存在各向異性。 土的 流變性質 土工建築物的變形和穩定是時間的函式。有些人工邊坡在建成後數年甚至數十年才發生坍滑,擋土牆後的土壓力也會隨時間而增大等,都與土的流變性質有關。

土的流變特性主要表現為:①常荷載下變形隨時間而逐漸增長的蠕變特性;②應變一定時,應力隨時間而逐漸減小的應力鬆弛現象;③強度隨時間而逐漸降低的現象,即長期強度問題。三者是互相聯絡的。

作用在土體上的荷載超過某一限值時,土體的變形速率將從等速轉變至加速而導致蠕變破壞,作用應力愈大,變形速率愈大,達到破壞的時間愈短。通過試驗可確定變形速率與達到破壞的時間的經驗關係,並用以預估滑坡的破壞時間。

產生蠕變破壞的限界荷載小於常規試驗時土的破壞強度。從長期穩定性要求,採用的土體強度應小於室內試驗值。土體強度隨時間而降低的原因,當然不只限於蠕變的影響。

土的蠕變變形因修建擋土牆或其他建築物而被阻止時,作用在建築物上的土壓力就隨時間逐漸增大。

土的壓實性質 對土進行人工壓實可提高強度、降低壓縮性和滲透性。土的壓實程度與壓實功能、壓實方法和含水量有關。當壓實方法和功能不變時,土的幹容重隨含水量的增加而增加,達到最大值後,再增加含水量,其幹容重將逐漸下降。

對應於最大幹容重時的含水量稱最佳含水量。壓實功能不增大而僅增加壓實次數或碾壓次數所能提高土的壓實度有一定限度,超過該限度再增加壓實或碾壓次數則無效果。填築土堤,在最佳含水量附近可用最小的功能達到最大的幹容重,因而要在室內通過壓實試驗確定填料的最佳含水量和最大幹容重(見路基填土壓實)。

但壓實的方法也影響壓實效果,對非粘性土,振動搗實的效果優於碾壓;對粘土則反之。研究土的壓實效能,可選擇最合適的壓實機具。為改善土的壓實效能,可鋪撒少量新增劑。

中國古代已盛行摻加 生石灰來改善土的壓實效能。

此外,人工控制填料的級配,也可達到改善壓實效能的目的。 土的應力-應變關係 土的變形和強度是土的最重要的工程性質。60年代以前,在工程上通常分別確定土的變形和強度指標,不考慮強度與變形間的相互影響。

因為土的應力-應變關係是非線性的並具有彈塑性、 甚至粘彈塑性特徵,而當時的計算技術,尚無法進行分析。

隨著計算機和數值分析法的普及,已可能把土的應力-應變關係納入土工建築物的分析計算中。正常固結粘土和鬆砂的剪應力和軸嚮應變的曲線呈雙曲線型,在整個剪下過程中,土的體積發生收縮,這類土具有應變硬化的特性。 超固結粘土和密實砂的應力-應變曲線則有峰值,其後應變再增大時,則土的強度下降,最後達穩定值。

剪下過程中,土的體積先有輕微壓縮,隨後即不斷膨脹,這類土具有應變軟化的特徵。為了使用數學方程描述各類土的應力-應變特性,現已有各種非線性彈性、彈塑性和粘彈塑性模型。利用這些模型和數值分析法,可以分析一些複雜邊界條件和不均質土體的變形和穩定問題。

但是這些模型中所對應的土的引數,目前尚難正確測定,土體的原始應力狀態也難確定,因而還難於在工程中普遍應用。 土的動力性質 土在巖爆、動力基礎或**等動力作用下的變形和強度特性與靜荷載下有明顯不同。

土的動力性質主要指模量、阻尼、振動壓密、動強度等,它與應變幅度的大小有關。應變幅度增大(<10),土的動剪下模量減小,而阻尼比例則增大。土的動模量和阻尼是動力機器基礎和抗震設計的重要引數,可在室內或現場測試。

2023年日本新潟大**,大面積砂土液化造成大量建築物的破壞,推動了對飽和砂土液化特性的研究。

液化的主要機理是土的有效強度在動荷載作用下瞬時消失,導致土體結構失穩。一般鬆的粉細砂最容易發生液化,但砂的結構和地層的應力歷史也有一定的影響。具有內聚力的粘性土一般不發生 液化現象。

黃土的工程性質 一般分為新黃土和老黃土兩大類,其性質也有顯著差異(見黃土地區築路、路基設計)。

軟土的工程性質 軟土一般指壓縮性大和強度低的飽和粘性土,多分佈在江、河、海洋沿岸、內陸湖、塘、盆地和多雨的山間窪地。軟土的孔隙比一般大於1.0,天然含水量常高出其液限,不排水抗剪強度很低,壓縮性很高,因而常需加固處理。

最簡單的方法是預壓加固法(見預壓法)。軟土強度的增加有賴於孔隙壓力的消失,因而在地基中設定砂井以加快軟土中水的排出,這是最常用的加固方法之一。

預壓加固過程中通過觀測地基中孔隙水壓力的消失來控制加壓,這是保證施工安全和效率的有效方法。此外,也可用碎石樁(見振衝法)和生石灰樁等加固軟土地基。 膨脹土的工程性質 粘土中的粘土礦物(主要是蒙脫石),當遇水或失水時,將發生膨脹或收縮,引起整個土體的大量脹縮變形,給建築物帶來損害(見膨脹土地基)。

多年凍土的工程性質 高緯度或高海拔地區,氣溫寒冷,土中水分全年處於凍結狀態且延續三年以上不融化凍土稱多年凍土。凍土地帶表層土隨季節氣溫變化有凍融交替的變化,季節凍融層的下限即為多年凍土的上限,上限的變化對建築物的變形和穩定有重大影響(見凍土 地基、多年凍土地區 築路)。

鹽漬土的工程性質見鹽漬土地區築路。 紅粘土的工程性質 熱帶和**帶溫溼氣候條件下由石灰岩、白雲石、玄武岩等類岩石風化形成的殘積粘性土。粘土礦物主要是高嶺石,其活動性低。

中國紅粘土的特點一般是天然含水量高、孔隙比大,液限和塑性指數高,但抗水性強,壓縮性較低,抗剪強度也較高,可用作土壩填料。

工程土質分類有哪些?土的工程分類有哪些

一類土 鬆軟土 略有粘性的砂土 粉土 腐殖土及疏鬆的種植土,泥炭 淤泥 二類土 普通土 潮溼的粘性土和黃土,軟的鹽土和鹼土,含有建築材料碎屑 碎石 卵石的堆積土和種植土。三類土 堅土 中等密實的粘性土或黃土,含有碎石 卵石或建築材料碎屑的潮溼的粘性土或黃土。四類土 砂礫堅土 堅硬密實的粘性土或黃土,...

土的工程分類的目的是什麼有那些分類原則

基因工bai程抗體 是繼多克隆抗du體和單克隆抗體之後的zhi第三代抗體,主要包dao括兩回部分 一是對已有的單答克隆抗體進行改造,包括單克隆抗體的人源化 嵌合抗體 人源化抗體 小分子抗體 fab sc fv dsfv diabody m i ni body等 以及抗體融合蛋白的製備 二是通過抗體庫...

土的工程性質有哪些對施工各有何影響

土的工程性質自主要有下列兩點bai 1 天然du 含水量 土的天然含水量zhi表示土的乾溼程度,是 dao指天然狀態下,土中水的重量與土顆粒重量之比。土的含水量越大,土越潮溼,對施工越不利。2 可鬆性與土方體積折算 1 可鬆性 土體經開挖後,組織被破壞,體積增加,即使夯實也無法恢復其原來體積的性質,...